

Virtual Tissues - the Next Big Step for Computational Biology

Implications for Toxicology and Risk Assessment

Virtual tissues – what and why?

- Multiscale biology
 - -Tissues are communities of heterogeneous cells
 - Cellular phenotype influenced by the neighborhood
 - Given that biology determines the response to environmental stress, multiscale computational modeling of tissues is a logical step on the path towards a more complete understanding of toxicological mechanisms and correspondingly more accurate risk assessments

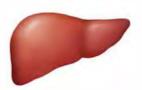
Virtual tissues – what and why?

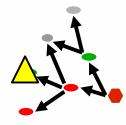
Technology

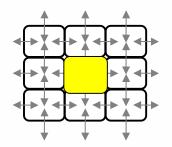
- -First PBPK models in the late 1960's
- Multiple orders of magnitude increases in computing power and software sophistication since then
- Virtual tissues are technologically feasible today

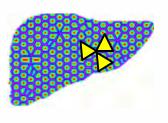
Key aspects of a virtual tissue


- More basic components inform structure and function at higher levels of organization
 - -molecules → signaling networks
 - -Molecules → organelles
 - –Signaling networks + organelles → cells
 - –Heterogeneous population of cells → tissue
- Intercellular processes
 - -Signaling networks
- Intracellular processes
- Spatial organization




Multiscale computing can help quantitative modeling of liver function and injury





Molecules -

Cell

→ Tissue

 \longrightarrow

Organ

- A Quantitative Understanding of Dynamic Cellular Processes During Detoxification in Human Hepatocytes (Research Network Within HepatoSys)
 - Matthias Reuss, Universität Stuttgart, Institut für Bioverfahrenstechnik
- The National Biomedical Computation Resource: Computing Technology to Support Development of Computational Tissues
 - Wilfred Li, San Diego Supercomputer Center, University of California, San Diego
- Towards the Virtual Human: Development of Three Dimensional Organ Models for Human Health Risk Assessment
 - -Richard Corley, Pacific Northwest National Laboratory

- Mechanistic Cardiac Modeling and Risk Assessment
 - Anna Georgieva, Novartis
- The Virtual Liver Project at the U.S. EPA's National Center for Computational Toxicology and Its Implications for the EPS Mission to Protect Human Health
 - -Imran Shah, U.S. EPA/ORD/NCCT